3.633 \(\int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx\)

Optimal. Leaf size=137 \[ -\frac {2 B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}} \]

[Out]

-2*B*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b))^(1/2))*(
a+b)^(1/2)*cos(d*x+c)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {21, 4222, 2809} \[ -\frac {2 B \sqrt {a+b} \sqrt {\cos (c+d x)} \csc (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{b d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a*B + b*B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*Sqrt[a + b]*B*Sqrt[Cos[c + d*x]]*Csc[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[
a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x
]))/(a - b)])/(b*d*Sqrt[Sec[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2809

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(2*b*Tan
[e + f*x]*Rt[(c + d)/b, 2]*Sqrt[(c*(1 + Csc[e + f*x]))/(c - d)]*Sqrt[(c*(1 - Csc[e + f*x]))/(c + d)]*EllipticP
i[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/(Sqrt[b*Sin[e + f*x]]*Rt[(c + d)/b, 2])], -((c + d)/(c - d))])/(d
*f), x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps

\begin {align*} \int \frac {a B+b B \cos (c+d x)}{(a+b \cos (c+d x))^{3/2} \sqrt {\sec (c+d x)}} \, dx &=B \int \frac {1}{\sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)}} \, dx\\ &=\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=-\frac {2 \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 147, normalized size = 1.07 \[ -\frac {2 B \sqrt {\frac {\cos (c+d x)}{\cos (c+d x)+1}} \sqrt {\sec (c+d x)+1} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (\cos (c+d x)+1)}} \left (F\left (\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )-2 \Pi \left (-1;\sin ^{-1}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {b-a}{a+b}\right )\right )}{d \sqrt {\frac {1}{\cos (c+d x)+1}} \sqrt {a+b \cos (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/((a + b*Cos[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]]),x]

[Out]

(-2*B*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*(EllipticF
[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] - 2*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])*S
qrt[1 + Sec[c + d*x]])/(d*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

fricas [F]  time = 0.71, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {B}{\sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral(B/(sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.30, size = 144, normalized size = 1.05 \[ \frac {2 B \left (\EllipticF \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, \sqrt {-\frac {a -b}{a +b}}\right )-2 \EllipticPi \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}, -1, \sqrt {-\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {a +b \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right ) \left (a +b \right )}}}{d \sqrt {a +b \cos \left (d x +c \right )}\, \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x)

[Out]

2*B/d/(a+b*cos(d*x+c))^(1/2)*(EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))-2*EllipticPi((-1+cos(
d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2)))*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)/(1/cos(d*x+c))^(1/2
)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\sec \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)^(3/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*a + B*b*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)),x)

[Out]

int((B*a + B*b*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ B \int \frac {1}{\sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*cos(d*x+c))/(a+b*cos(d*x+c))**(3/2)/sec(d*x+c)**(1/2),x)

[Out]

B*Integral(1/(sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________